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SUMMARY

NASA-Lewis has completed wind tunnel performance tests of a fourth model Prop-Fan,
SR-3, as a part of the NASA Aircraft Energy Efficient Program. A 62.2 cm (24.5 in)
diameter variable pitch model was tested at Mach numbers from 0. 45 to 0.85 in the
NASA-Lewis 2.44 x 1,83m (8 x 6 ft) supersonic wind tunnel. This fourth Hamilton
Standard model incorporates more sweep than the previous Prop-Fans. The aerodynam-
ic design and the degree of blade sweep of SR-3 were influenced by noise reduction con-
siderations which were analyzed with a recently developed acoustic theory. Hamilton
Standard, under contract to NASA-Lewis, has analyzed the SR-3 test data and presented
the results in this report.

The objective of the test and the data analysis programs was to establish and present the
performance of this highly swept propeller over a wide range of conditions. These re-
sults have also been compared to earlier tests of the unswept SR-2 Prop-Fan and the
30° tip swept SR-1 Prop-Fan.

The model had eight blades which were swept aft 45° at the blade tips. SR-3 was designed
to produce a net efficiency of 81.2% and a near field noise of 137 dB at the design cruise
condition. The cruise design point is at a freestream Mach number of 0. 80 at an altitude
of 10.68 km (35000 ft.), a tip speed of 243.8 m/s (800 ft/sec) and a power loading of

301 kw/m?2 (37.5 HP/ft 2), The model Prop-Fan was tested with an integrally designed
area-ruled spinner and specially contoured nacelle. The sweep was incorporated to
minimize high Mach number performance losses and to produce acoustical phase inter-
ference which would result in reduced noise levels. The spinner and nacelle contours
were selected to reduce blade section Mach numbers and to relieve blade root choking.

A net efficiency of 78.2% was achieved at the 0.80 Mach number design point. This is a
29 higher efficiency than that obtained for the 30° swept SR-1 model and 2. 4% higher than
that for the unswept SR-2 model, where all data are based upon NASA-Lewis tests. Com-
parisons showing both the predicted and the measured performance characteristics indi-
cate fair agreement and point to the need for additional theoretical development.



INTRODUCTION

The potential benefits of the Prop-Fan (advanced turboprop) propulsion concept have been
investigated in numerous propulsion and aircraft systems studies conducted by both the
airframe and engine manufacturers under NASA sponsorship (Ref. 1-7). This work was
largely undertaken in response to the worldwide energy shortage and the rapidly increas-
ing cost of aviation fuel. These studies were initiated in late 1974 followed by the initial
research programs in 1976,

The Prop-Fan {s a small diameter, highly loaded, multi-bladed variable pitch advanced
turboprop. The blades incorporate thin airfoils with sweep and are integrated with a
spinner and nacelle shaped to reduce the axial Mach number through the blading. This
configuration alleviates compressibility losses and results in higher propulsive efficiency
than is achievable by high bypass turbofans. The envisioned installed configuration which
incorporates the above advanced aerodynamic concepts is pictured in Figure 1. A com-
plete discussion of the Prop-Fan concept is presented in References 8 and 9.

The Prop-Fan mated with a turboshaft engine of equal core technology to a turbofan
engine exceeds the turbofan by 15 to 30 percent in efficiency at Mach 0, 8 cruise speed
and 25 to nearly 40 percent at Mach 0, 7, resulting in about the same percentage re-
duction in fuel consumption,

In view of the attractive fuel savings potential of the Prop-Fan propulsfon system, NASA
has included the Advanced Turboprop Project as part of the extensive Aircraft Energy
Efficient Program. The Lewis Research Center has total responsibility for this turbo-
prop project which is summarized in Reference 10. The objective of the Advanced Turbo-
prop Project is to demonstrate technology readiness for efficient, reliable and acceptable
operation of turboprop-powered commercial transports at cruise speeds up to Mach 0. 8

and at altitudes above 9.1 km (30, 000 ft. ). This technology would also apply to possible
new military aircraft for a variety of missions.

Phase I of this project, titled Enabling Technology, was started in 1976. This

effort included the wind tunnel testing of a series of 62. 2 cm (24.5 in) diameter, 8 and
10-bladed Prop-Fan models aimed at establishing the aerodynamic design criteria to
achieve the projected propulsive efficiency goals. To date four 8-bladed models, desig-
nated SR-1, SR-2, SR-1M and SR-3 have been designed and fabricated by Hamilton
Standard. These models were designed for the same high speed cruise operating condi-
tion, i.e., 0.8 Mach number, 10.7 km &35, 000 ft) altitude, 244 m/s (800 ft/sec) tip speed
and a cruise power loading of 301 kw/m?2 (37. 5 SHP/D2). Two models, the 30° swept -
bladed SR-1 and the straight-bladed SR-2 were tested in both the United Technologies
Research Center's (UTRC) 2.44m (8 ft) high speed wind tunnel and in the NASA Lewis



2.44m by 1.83m (8 x 6 ft) supersonic wind tunnel. The third model, SR-1M, a twist and
camber modification of the SR-1 based on test results, has been tested in the NASA Lewis
wind tunnel. For the first three models, primary emphasis was on achieving high aero-
dynamic efficiency. Noise was not a design consideration in these models primarily be-
cause derivation of an adequate noise theory was not yet complete. However, based on
experimental data, it was expected that incorporation of thin airfoil sections and blade
sweep would reduce noise. The fourth model, SR-3, was designed for both improved
aerodynamic efficiency and reduced noise utilizing the newly derived Hamilton Standard
Prop-Fan noise theory. This model has been tested in the NASA wind tunnel. The test
program in the UTRC wind tunnel on the SR-1 model is reported in Reference 9, and data
for both the SR-1 and the SR-2 models are shown in Reference 11. Although the reports
of the NASA wind tunnel tests for the SR-1, SR-2 and SR-1M models have not yet been
published, data for these as well as for th?, SR-3 model are included in References 12 and
13. This report covers the testing of the ourth model, SR-3, and presents a discussion
of the aerodynamic and acoustic design philosophy, a description of the test program and
an analysis and a discussion of the test results.

AERODYNAMIC AND ACOUSTIC DESIGN APPROACH

Prior to the design of the initial Prop-Fan models an aerodynamic design procedure was
developed based on the well-established Hamilton Standard Propeller Aerodynamic Pre-
diction Method. The method was derived from the work of Goldstein, Reference 14, and
will not be discussed herein. This Prop-Fan aerodynamic design procedure was used in
designing the previous three models, SR-1, SR-2 and SR-1M and an improved revision
has been used to design the latest model, SR-3 reported herein. The procedure has been
discussed in References 8 - 12 and will be only briefly restated later.

Since a suitable acoustic theory for high speed swept-bladed propellers had not yet been
developed, the first three Prop-Fan models were designed without the benefit of an
acoustic analytical method to optimize the blade shape characteristics for minimum
noise. Instead, design guidance was based on evaluation of the available noise data on
conventional, straight-blade propellers operating at various tip speeds. Of course, this
evaluation was done in the light of trends which were expected based on existing propeller
noise prediction methodology. This existing methodology was limited to consideration of
straight (unswept) blades and was limited in the amount of configuration detail that could
be considered in the noise calculation. Fortunately, a new acoustic method, developed by
Hamilton Standard in 1976-1977, was available for the design of SR-3. In view of the im-
portance of noise to the acceptance of the Prop-Fan concept, SR-3 was optimized for re-
duced noise as well as improved efficiency relative to the earlier models. Thus, the
unique shape of the SR-3 blade was dictated primarily by the acoustic requirements. The
new acoustic theory is discussed in some detail. Additional theoretical discussions have
been included in earlier technical reports and papers (References 15 and 16).



Aerodynamic Design Procedure

The procedure for the aerodynamic design of the Prop-Fan is accomplished by using
several existing aerodynamic methods which best apply to particular portions of the Prop-
Fan and nacelle combination. Briefly, as outlined in the block diagram of Figure 2, the
approach is to model the Prop-Fan as a turbofan in the root sections where the gap-to-
chord ratios are below 1.0, as a turboprop over the outer portions and as a swept wing
for those sections incorporating sweep. To this end, conventional turbofan aerodynamics
have been modified to represent the Prop-Fan root blading and nacelle combination with
the usual influence of the turbofan duct removed. This method includes a streamline
analysis coupled to empirical cascade data. The basic propeller performance prediction
method was modified to incorporate 2-D compressible airfoil data with a cascade cor-
rection for the mid-blade portion. For the tip section, this same method has been fur-
ther modified to incorporate a tip relief correction to account for the three-dimensional
flow effect on compressibility losses. In addition, a method based on the two-dimension-
al wing cosine correlation for sweep effects on airfoil performance has been added to the
propeller program.

Finally, development of a new compressible induction method based on the Biot-Savart
equations was undertaken to account for the effects of the supersonic Mach number zone
of silence and the swept lifting line on the induction at the outer portions of the blade.

In addition, the method incorporated the same compressible airfoil data, cascade cor-
rection and sweep analysis as were included in the Hamilton Standard Propeller Perfor-
mance Method. Also, a supersonic blade tip Mach cone correction to the airfoil data
was incorporated in the method. Although not yet fully developed, this advanced method
was used in the final optimization of the shape characteristics of the initial three models.
A refined version of the method was similarly utilized in the final refinement of the SR-3
Prop-Fan model.

The design procedure begins with a preliminary analysis where the Prop-Fan diameter,
number of blades, RPM, and power are selected. Blade thickness ratio distribution is
generally chosen as the minimum allowable by stress limitations, aeroelastic considera-
tions and the fabrication state-of-the-art. The initial blade planform is selected based
on experience and a preliminary performance analysis of the design condition. Next,
the velocity gradient at the Prop-Fan plane is obtained from calculations of the flow
field around the spinner/nacelle configuration including the blade blockage. Then, with
this velocity gradient and the selected initial geometry and design operating condition(s),
the Prop-Fan is analyzed using the aerodynamic design method described above. With
this program, the optimum loading distribution for minimum induced loss with cor-
responding minimum profile losses along the blade span is established by iterating be-
tween angle of attack (twist) and camber.



As previously mentioned, the blade root gections are relatively thick with low gap-to-
chord ratios. Therefore, cascade effects are important and choking could be a problem.
Since the conventional propeller theory does not apply under these conditions, the flow

in this region is analyzed and cascade airfoils are selected using the turbofan methodology
as indicated above.

Finally, the design must be checked at take-off and climb conditions. Because good low
speed performance may require higher camber, the low camber selected for high speed
cruise may need to be modified to a slightly higher camber. Then, with the inclusion
of the root configuration designed by the turbofan method and the take-off climb con-
straints, final iterations with the aerodynamic program are required to assure that the
final design achieves the highest cruise performance with acceptable take-off perfor-
mance,

Since this basic program may not properly analyze the induction at the tips of blades
operating at supersonic speeds, the aforementioned compressible induction method is

then used for the final tailoring of the Prop-Fan model.

Prop-Fan Acoustic Design Procedure

In the SR-1 design, the features included to minimize noise were a reduction in airfoil
thickness and a moderate amount of sweep. The reduction in thickness was expected to
reduce the near field noise in cruise since thickness related noise is a dominant part of
the noise of propellers operating at high tip speed. The moderate amount of sweep in-
corporated was expected to lower the effective Mach number at which the blade airfoils
operate and, therefore, reduce the excess noise which has been observed in conventional
propellers when they operate at tip relative Mach numbers exceeding the critical Mach
number of the blade airfoils. Unfortunately, the effect of these design features could not
be accurately analyzed without an appropriate theory. Thus, the earlier Prop-Fan
models were not optimized for minimum noise.

However, in 1976 a theory was developed by Hanson (see ref. 17) which allowed predic-
tion of near field noise of propellers operating at high subsonic speed. This theory was
based on the Lighthill/Ffowcs-Williams "acoustic analogy" (see ref. 18) in which the
equations of fluid motion are cast into a wave equation for acoustic pressure. Two com-
ponents of noise are calculated by this theory, the first, called thickness noise, is
dependent on the blade airfoil section thickness distribution and the second, called load-
ing noise, is determined by the pressure loading distribution on the surface of the blade.
A third term in the Lighthill/Ffowes-Williams equation, the quadrupole source term,
was ignored in this early theoretical development because it was believed to be small
relative to the thickness term. In the formulation of this theory the propeller blades

are assumed to travel along an infinite helical surface defined by the forward flight speed
of the aircraft and the angular velocity of the propeller. In the calculation process, the



noige is calculated for a single blade traveling along the helical path and the noise from
the other blades is added by superposition with appropriate time lags.

Figure 3 shows schematically the input requirements, computations, and output of the
computer program which makes use of the above described theory. For propeller load-
ing noise predictions the chordwise and spanwise blade differential pressure distribution
is the input to the program. The spanwise variation in pressure is a function of the lift
coefficient obtained from performance calculations for the propeller. The chordwise
variation in pressure is based on the chordwise loading distribution of airfoils of the type
used in the Prop-Fan design. For the design of the SR-3 a generalized chordwise load-
ing distribution was used. For thickness noise calculations the actual blade thickness
distribution is the input to the program.

The basic output of the program is the acoustic’ pressure waveform at a specified point

in space agssumed to be moving forward at the same speed as the propeller. The harmonic
components of noise obtained from a Fourier analysis of this waveform are also an output.
Thus, it is possible to calculate the noise at the location of a fuselage near a Prop-Fan as
the aircraft is flying at cruise speed.

For the SR-3 the primary noise reduction feature of the design was the blade sweep
which was optimized using the theory described above. This sweep optimization utilized
the concept of destructive interference of noise from different spanwise stations on the
propeller blade. This concept is based on the fundamental assumption of linear acoustics
that the acoustic pressure at any observer position can be calculated as the sum of con-
tributions from each element of the source volume and surface area. To be done cor-
rectly, the summation (or integration) process must account for the amplitude and phase
of the elemental contributions. If source dimensions of the blades are greater than about
1/2 the wavelength of interest (i.e., if the source is "acoustically non-compact'), then at
some observer positions, elemental signals from different positions of the source will
arrive out of phase. The net noise will then be reduced by self-interference below the
level which would be obtained if the source dimension were very small ("acoustically
compact"). Although the term, "acoustically hon-compact, " is relatively new, the
principle has been known for many years. For example, in Gutin's original theory for
propeller noise (see ref. 19), the appearance of Bessel functions and the polar directivity
pattern result from phase variation around the propeller circumference. For most con-
ventional propellers, chordwise and spanwise phase variations can be neglected at blade
passing frequency. However, the combination of high Mach number, many blades, and
large chord of the Prop-Fan means that chordwise and spanwise phase variations must be
included.

The phase interference concept is most clearly illustrated with reference to the effect of
sweeping a blade planform as suggested by figure 4. At blade passing frequency, the
noise from any spanwise strip of the blade is simply a sinusoidal wave with an amplitude



and phase angle. The noise from one blade as measured at a given point in space is
simply the vector sum of the contributions from each spanwise strip and the noise of the
total propeller is the product of the vector sum and the number of blades. The effect of
sweeping the tip back is to cause the signal from the tip of the blade to arrive at the mea-
suring point later than the signal from the mid-blade region thus causing partial inter-
ference and a reduction in net noise.

For the SR-3 design a graphical version of the concept discussed above was developed.

In this graphical procedure the noise contributions associated with each spanwise strip of
the blade are treated as vectors having amplitude and phase angle. Then, the summation
of the contributions from the strips is performed by adding the vectors head-to-tail as
shown in figure 5. In the figure at the left, the generally in-phase individual contributions
from several spanwise locations on the blade starting from the root station at the lower
left to the tip station at the upper right vectorially add up to a value shown by the resul-
tant amplitude vector (the resultant noise). This is the general result for unswept and
slightly swept Prop-Fan blades. However, in the figure at the right of figure 5 the phase
differences of the individual noise contributions from these spanwise locations on the
blade are seen to cause a substantial reduction in the resultant amplitude. This is the
result for a Prop-Fan blade with proper blade sweep.

The effectiveness of blade sweep in reducing the noise predicted for the SR-3 as compar-
ed with that predicted for SR-1 is shown in figures 6 and 7. In these figures the vector
plots are shown for the thickness and loading components of noise at dimensionless obser-
ver points 0.25 Prop-Fan diameters forward of the plane of rotation, in the plane of rota-
tion, and 0.5 Prop-Fan diameters aft of the plane of rotation. The summation of the thick-
ness and loading noise components are shown in the vector plots at the bottom of these fig-
ures. The observer locations in the figures were selected for study as experience had shown
that near field noise for the design cruise condition would be a maximum in this region.

The greatest difference between SR-3 and SR-1 as seen in figures 6 and 7 is in the phase
cancellation of the total noise ahead of the plane of rotation. Since this is where thickness
noise tends to dominate, it has been concluded that thickness noise can be reduced effec-
tively with sweep. However, aft of the plane of rotation, where loading noise tends to
dominate, the sweep is not as effective.

The SR-3 is the result of an extensive study of the effect of configuration variables on
noise. This studv was constrained by the requirements to improve performance over
previous Prop-Fan designs and by structural design limits. The greatest effects found
in this study were those that result from increasing sweep and activity factor. A sum-
mary of these trends is shown in figure 8. Here it is shown that tip sweep of less than
30 degrees is not effective in reducing the total noise at any of the observer locations
evaluated. In order to achieve substantial reductions a sweep of 40 to 50 degrees is re-
guired. Also, it is shown in figure 8 that an increase in activity factor relative to that
of the SR-1 (slightly swept) or the SR-2 (unswept) Prop-Fan model blades is required to



reduce total noise. The combination of increased sweep and activity factor can be seen
in figure 8 to be most effective at the observer locations ahead and in the plane of rota-
tion. At the observer location 0.5 diameters aft of the plane of rotation some reduction
can be observed, but is not as significant as that at other locations. This is due to the
lack of effectiveness of sweep for reducing the loading noise which tends to dominate aft
of the plane of rotation.

Figures 9, 10 and 11 show comparisons of the thickness, loading and total noise ¢the sum
of thickness and loading) of the SR-1, SR-2 and SR-3. The greatest difference between
the noise of the three configurations is in the thickness noise component of figure 9. For
the slightly swept SR-1 design and the unswept SR-2 design, the thickness noise peaks
near the plane of rotation. The lack of effectiveness of suppressing the thickness noise
component of the SR-1 can be seen in figure 9. In contrast, the SR-3 design is predicted
to show a reduction of about 14 dB in peak near field noise relative to SR-1 due primarily
to its increased sweep.

The loading noise components of SR-1, SR-2, and SR-3 of figure 10 show that SR-3 is
predicted to produce 7 dB lower peak near field noise as compared with SR-2. Based on
figure 10, the sweep configuration of SR-1 was apparently effective in slightly reducing
loading noise, but the increased activity factor and sweep of SR-3 is much more effective.

The predicted near field directivities of the total noise of the SR-1, SR-2, and SR-3 de-
signs are shown in figure 11. SR-1 is seen to have a predicted peak of 142.6 dB. Even
though SR-2 is unswept it is predicted to have a peak of 143. 2, only 0.6 higher than SR-1.
In contrast, SR-3 is predicted to produce a maximum of 137 dB or 6 dB less than SR-1.
The noise components of SR-3 from figures 9 and 10 and the total noise from figure 11
are repeated in figure 12. It can be seen here that loading noise is the dominant contribu-
tion to total noise and that sweep has been effective in suppressing thickness noise.

In summary, the study which led to the SR-3 design has shown that the phase cancellation
concept should be effective for reducing noise. Acoustic tests of the SR-1, SR-2 and SR-3
models in the United Technologies Acoustic Research Tunnel provide an

indication of the benefits of the SR-3 concept. Those SR-3 acoustic results are presented
in reference 20. Noise data have also been taken in the LeRC 8 by 6 tunnel and are pre-
sented in references 21 and 22 and briefly in this report. Further acoustic tests in flight
to be conducted with the models installed on an air turbine drive mounted on a Lockheed
Jetstar will provide additional information useful for further optimization of the phase
cancellation concept.

MODE L DESCRIPTION

Utilizing the aerodynamic and acoustic design methodology described above, the SR-3
Prop-Fan model was designed for the same operating condition as were the previous
three models, i.e., 0.8 Mach number, 10.668 km (35,000 ft) I.S.A. altitude, 244 m/s
(800 ft/sec) tip speed and a power loading of 301 kw/m?2 (37. 5 SHP/D?). The design



goals of the SR-3 model were improved efficiency and significantly reduced near field
noise compared to the earlier designs. Thus, the design effort required optimizing the
blade shape for both performance and noise. This effort involved many design iterations
to establish a configuration providing maximum efficiency and minimum noise. Many
further iterations were required to satisfy the structural requirements. The final con-
figuration of the SR-3 blade is pictured in figure 13. The calculations yield a net un-
installed efficiency if 81.2 percent and a total noise at blade passage frequency of 137
dB. These values represent an increment of approximately 2-2. 5% increase in efficiency
and 6-7 dB reduction in total noise compared to the predicted values of the previous
models.

The nominal 62.2 cm (24. 5 in) diameter was the same as that of the previous models.
However, it should be pointed out that the diameter of variable pitch propellers with
swept blades changes as the blade angle is varied. Thus, the diameter of the SR-3
model varies with blade angle as shown in figure 14. The static or zero RPM curve
shows that the diameter varies from 62.2 cm (24.5 in) at approximately the feather
angle to a maximum of 64.7 cm (25.5 in) at nearly flat pitch. As shown on the plot, the
diameter is further increased with tip speed as the result of elastic deflection under cen-
trifugal load.

The mechanism by which the diameter varies is shown schematically in figure 15. The
height, y, of the tip airfoil center of gravity (CG) above a plane passing through the pro-
peller axis of rotation and perpendicular to the pitch change axis is 31.12 cm (12.25 in).
This height is shown in both the side and front views. The top view looking from tip to
hub shows the distance, z, from the pitch change axis to the tip airfoil CG. The tip air-
foil offsct, A, is the perpendicular distance from the projected tip chord line to the pitch
change axis. This dimension occurs because the SR-3 model was swept along the ad-
vance angle line rather than the extended chord line. These dimensions are constant for
a given geometry. Finally, the projected distance, x, is from the section CG to the axis
of rotation and varies with blade angle as a function of A and z. Thus, the tip radius at
any blade angle is given by RTIP = (y2 + x2)1/2. For the SR-3 model A and z are .64 cm
(0.25 in) and 9.0 cm (3.45 in), respectively. These values result in the static diameter
variation with blade angle shown in figure 14.

In this report, the minimum or reference diameter, Dref, of 62.2 cm (24.5 in) was
selected to define the coefficients, Cp, CT and J used in the basic performance maps.
The actual values of T/p, P/p and V/n can be obtained from the coefficients by using
the reference diameter. Full scale performance can be obtained for geometrically
similar Prop-Fans by using an identically defined but scaled reference diameter.



The overall characteristics of the SR-3 Prop-Fan model are listed below:

8 blades

235 activity factor/blade (AF)

0.214 Integrated Design Lift Coefficient (C Li)
45° blade tip sweep (A)

NACA 16 and 65/CA airfoils

The blade shape characteristics are presented in figure 16. The thickness ratio, t/b,
distribution is identical to that incorporated in the previous models. The twist (AB),
design lift coefficient (CLp) and planform (b/D) distributions were established to pro-
vide optimum loading distribution at the design condition for maximum efficiency and
minimum noise. In general, for aerodynamic performance, the sweep distribution is
that required to effectively reduce the local relative Mach number (MN) along the blade
radius below the corresponding critical MN of the airfoils, thus alleviating compres-
sibility losses over the outer portions of the blades. However, as discussed above, the
sweep and planform on the SR-3 model were established by the acoustic theory to achieve
maximum source noise cancellation consistent with acceptable structural design. The
resulting sweep distribution more than meets the aerodynamic requirements.

As shown in the photograph of figure 13, the planform sweeps forward from the root sec-
tion to approximately the 45 percent radius and then sweeps back to the blade tip. This
configuration was required to alleviate unacceptably high blade stresses due to centrifugal
loads on swept blades. The resulting sweep distribution is shown in figure 17. The manu-
factured sweep of the line connecting the centers -of-gravity of the airfoils along the blade
radius varies from 45 degrees at the tip to zero at the 45 percent radius to -25 degrees

at the spinner surface. Since the airfoil sections are laid out along streamlines which
vary from conical lines at the spinner to cylindrical lines at the blade tip, the total effec-
tive aerodynamic sweep is increased as shown in the figure.

The stacked view and the developed planform of the blade are shown in figure 18. The
sweep was achieved as in previous swept models by first stacking the sections along the
pitch change axis and on the proper streamline. Next, each section of SR-3 was oriented
to the proper twist angle and then swept back on the helix defined by the advance angle.
The airfoil sections selected for the SR-3 blade design are NACA Series 16 from the tip
to the 53 percent radius and NACA Series 65 with circular arc (CA) camber lines from
the 37 percent radius to the root with a transition fairing between. These airfoils were
chosen for their high critical Mach number and wide, low drag buckets. The spinner and
nacelle lines shown in figure 19 were configured to produce the flow retardation required
to alleviate the blade root choking and to minimize compressibility drag rise. The spin-
ner incorporates area-ruling and blends to a maximum nacelle diameter equal to 35 per-
cent of the model Prop-Fan diameter. The nacelle configuration is the same as that of

10



the previous models. The Mach number distribution along the nacelle surface, including
the effect of blade blockage, is shown in the figure. It is noted that no choking is indi-
cated through the blade row. A mild supercritical bubble over the nacelle surface near
the maximum diameter is indicated. However, this localized region of supercritical
flow, with Mach numbers reaching only slightly above 1.1, is not expected to present a
problem. In fact, tests on the SR-1 and SR-2 models showed these local Mach numbers
to be barely over 1.0.

The calculated thrust and power coefficient distributions along the blade radius are pre-
gented in figure 20. The curves were derived from calculations utilizing the methodology
based on Goldstein. The test results from the SR-1 and SR-2 models indicated blade
loading distributions closer to those predicted by this method than by the original com-
pressible induction method. A comparison of the test distributions with those predicted
by both the Goldstein and the new compressible induction method are covered later in the
report.

TEST FACILITIES

Wind Tunnel

The SR-3 Prop-Fan model test was conducted in the NASA-Lewis 2.44 x 1.83m (8 x 6 ft)
Supersonic Wind Tunnel. This tunnel,described in reference 23, incorporates a 4.27m
(14 ft) long, 5.8 percent porosity perforated test section to minimize model/wall inter-
actions. The test section Mach number can be set from 0. 36 to 2. 00, well encompassing
the 0.45 to 0.85 range required for this test. The tunnel was run in the propulsion mode
for this SR-3 model test program. This is an open circuit mode where outside air is
drawn in upstream and is exhausted to the atmosphere downstream of the model.

Propeller Test Rig

The Propeller Test Rig (PTR) was strut-mounted from the ceiling in the tunnel test sec-
tion. The PTR and the SR-3 model are shown in the tunnel in figure 21. A cutaway view
of the PTR is presented in figure 22. The model is driven by a three-stage air turbine
utilizing high pressure air at 3.1 x 108 newtons/m? (450 psi) and heated to 366° K (660° R).
The turbine is capable of delivering nearly 746 kw (1000 Hp) to the Prop-Fan model. The
PTR metric system includes two separate axial force measuring systems. The primary
system is a rotating balance which measures thrust and torque of the Prop-Fan and spin-
per. The second system includes a thrust meter located in the overhead vertical strut.
Both systems measure propeller blade and spinner forces only, when corrected for inter-
nal pressure tares. Model parts, other than the spinner and blades, that are metric to
the strut-mounted load cell are shielded from the freestream tunnel air by a windscreen
(figure 22). Static and dynamic (i.e., spinning) calibrations of the balances were done
before and during the SR-3 test period. The data transducer pickups are scanned with
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the CADDE (Central Automatic Digital Data Encoder) system which converts steady state
direct current signals to digital numbers. Rotational speed, torque and both measure-
ments of axial force were each recorded twelve times during each data scan and then
averaged. All of the reduced wind tunnel and PTR data is available on-line with about a

15 second lag. This permits the data to be perused and, if desirable, certain additional
points may be included as the test is in progress.

The PTR and the metric systems were designed and developed specifically for conducting
research on advanced propellers in the LeRC 8 x 6 tunnel.

Pressure Instrumentation

Pressure measurements were made internal to the PTR (figure 23a), and were necessary
to obtain the Prop-Fan model apparent thrust from the balance axial force measurements
Additional pressure measurements were made on the surface of the nacelle which is lo-
cated downstream of the model hub. The nacelle body, which was mounted on the PTR
windscreen, incorporated four azimuthal rows of static pressure taps and is shown in
figure 23b. Nacelle pressure measurements were made for each test performance point
and for special tare runs, Measured nacelle surface Mach number distributions at

Mach 0, 8 for spinner only, blades at windmill, and blades powered near the design
condition are presented in figure 19, The tare runs were made with a special smooth
blade hub which had no blade holes. These measurements were used to obtain an
incremental nacelle pressure force and, with the apparent thrust values, provided the
required net thrusts of the model Prop-Fan. These testing procedures are discussed

in more detail later in the text.

A special series of test runs with a wake survey probe were made after the performance
runs were completed. This is a yawable, traversing probe which was mounted on the
tunnel floor and downstream of the model blades, as shown in the photograph of figure 21.
The probe was remotely controlled and measured radial distributions of static and total
pressure, total temperature and swirl (yaw) angle of the wake flow. These data are use-
ful in diagnosing the Prop-Fan exit flow characteristics and in determining blade load-

ing distributions. Four samples of power loading distributions are discussed and pre-
sented later in the text.

PROGRAM DESCRIPTION

Objectives

The objectives of this test program were:

1. To establish the complete aerodynamic performance of the third generation,
SR-3 Prop-Fan model over a Mach number range from 0. 45 to 0. 85.

12



2. To obtain detailed wake measurements for deriving radial loading distributions
at selected operating conditions.

3. To compare the measurements with predicted performance and loadings.

Test Variables and Techniques

In order to achieve the objectives of this program the SR-3 Prop-Fan model was tested
over a range of Mach numbers from 0.45 to 0.85. At each Mach number, model thrust
and power were measured through a range of blade angle and rotational speed. The blade
angle/Mach number combinations covered are listed in the following test run schedule:

Mach No. 0.45 0.60 0.70  0.75  0.80  0.85
Bo.75R

45.5 X

48.2 X X

51.5 X X X

54.3 X X X

57.3 X X X X X

55.5 X X X X X
59.3 X X X X X
60.5 X X X X X
61.3 X X X X X
62.3 X X X X X
63.3 X X X X X
64.7 X X X X X

At each blade angle/Mach number combination, measurements were taken over an rpm
range from the windmilling value to 9000, the maximum allowed by blade stress limita-
tions. Each rotational speed setting constituted a test point.

Test Procedure

A special test procedure was adopted based on utilizing measurements from both the
rotating balance and the strut-mounted force system (figure 22). This procedure was
required to overcome a slow thermal drift in the thrust reading of the rotating balance,
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which was apparently due to heat generated by its bearings. An initial series of wind
tunnel runs was made to establish reference windmill drags for each Mach number/blade
angle combination using the strut-mounted force system. To minimize any errors during
this testing due to tunnel air passing over the metric parts of the model, a cover plate
was installed on the aft end of the model. After establishing the reference windmill
drags, incremental thrust data were obtained using the rotating balance in a windmill-
power-windmill test sequence. At each desired power point, the model was first wind-
milled, then a power point was taken, and this was followed by a second windmill point.
By subtracting the average of the two rotating balance windmill points from the thrust at
the power point an incremental propeller thrust was obtained that minimized any thermal
drift errors. Incremental thrusts thus determined were added to the reference windmill
drags determined in the earlier tests with the strut-mounted force system to establish
the final thrust values for each power point. This procedure was repeated for each Mach
number and blade angle combination. Torque was determined directly from the rotating
balance as it was not sensitive to any adverse thermal effects. A further explanation of
this procedure along with the equations used is given in Appendix A. A direct comparison
of propeller performance using this procedure with measurements from another propeller
test rig in a second wind tunnel (ref. 9) is shown in figure A.3. The agreement when
identical propeller hardware was tested is quite good.

After completion of the performance run schedule, surveys of the wake were made with
a remotely controlled traversing probe for selected Prop-Fan operating conditions. At
these conditions, the probe was positioned radially and in yaw to measure the total and
static pressures, total temperature and flow direction.

PROPELLER NET FORCE MEASUREMENTS

As described previously, the Prop-Fan model was tested in the presence of a nacelle
which was designed to alleviate compressibility loss in the blade root sections. Also,

as shown in the section entitled "Test Facilities', the propeller blades and spinner were
the only external model components on the metric portion of the PTR. The simulated
axisymmetric nacelle was attached to the ground portion of the model. With this force
measurement arrangement it has been shown (ref. 24) that the propeller net thrust can-
not be directly measured on the force balance. This is true because, as discussed in
references 24 and 25 there is a mutual force interaction for a propeller operating in the
presence of a nacelle. This interaction causes an increase in propeller thrust and a
corresponding increase in the pressure drag on the nacelle. This higher propeller thrust
has been classically referred to as apparent thrust and is the major force component mea-
sured by the PTR balance. The Prop-Fan net thrust was obtained by correcting the ap-
parent thrust for the equal and opposite change in pressure drag on the non-metric nacelle.
The corrections were obtained from integrations of the nacelle surface pressure measure-
ments which were taken for each test point and for special tare test points taken with the
aforementioned special hub without blades.
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The net propeller thrust is defined as the propulsive force of the blades operating in the
presence of the spinner and nacelle flow field without the increase in thrust due to the
mutual interaction. This thrust is analogous to the traditional isolated propeller thrust.

With the present model force arrangement the balance measures the algebraic sum of the
apparent thrust, spinner drag, and internal pressure area forces. Therefore, to resolve
these forces, a series of model tare tests were made first without the propeller blades
to evaluate both the external spinner aerodynamic drag and the nacelle pressure drag.

Dny
—_—

fett—— I PA|NT

_ : 7/

FORCE BALANCE (FB)

Ds = fB -
EPAINT

DNnT =f(PsN -Psg) 8AN

In these tare tests the spinner for the performance testing was replaced by a ""dummy"
hub made without the holes for the blades. A special series of experimental runs was
made to define the spinner aerodynamic and nacelle pressure drag for the same range

of tunnel Mach numbers as would be tested with the model blades. Model RPM was shown
to have no effect on measured spinner and nacelle drag. As shown in the above sketch,
the spinner drag was measured directly from the force balance with a correction for the
internal pressure area forces. The nacelle pressure drag (DNT), Was determined by
pressure integration of the longitudinal rows of area-weighted pressure orifices. Spinner
aerodynamic drag and nacelle pressure drag coefficients obtained in these tare tests are
shown in figures 24 a and b.

With the blades installed and thrusting, the force balance measured the algebraic sum of

the apparent thrust, the spinner drag, and the internal pressure area forces. The model
forces are as shown in the following sketch:
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Therefore the apparent thrust of the propeller was obtained as shown in the following
equation:

D

T = FB _ZPAINT + S

APP

and the nacelle pressure drag was obtained from nacelle surface pressure integrations:

DN =ﬁP-Po) dA

The change in nacelle pressure drag, ADy, was obtained from the difference between
these and the tare run pressure integrations =

Finally, the net thrust was obtained by subtracting the change in nacelle pressure drag
from the apparent thrust:

Tyer = Tapp ~ 4Dy

RESULTS AND DISCUSSION

Formats for Force Data Presentation

The experimental force data corresponding to each freestream Mach number are com-
pletely contained in figures 25 through 30. In this format the data are shown as dimen-
sionless power coefficient and net efficiency variations with advance ratio. Five or more
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blade angle lines are shown on the figures for each of the six freestream Mach numbers.
The power coefficients and the advance ratios are based upon the Prop-Fan reference
diameter, DREF, and are therefore referred to as CPREF and JREF. The true tip dia-
meter, D, is larger than the 62.2 cm (24.5 in) reference diameter. The relationship
between the true and the reference diameters has been previously discussed and shown
in figure 14. Reference power coefficient and reference advance ratio are defined as:

_ 35
Cp = P/p n'D

REF REF

A AL

The performance of the Prop-Fan is expressed as net efficiency, and this is the efficien-
cy at which the model produces net propulsive thrust while operating in the velocity field
of the nacelle and spinner. Net efficiency is defined as:

_ Net Thrust x Freestream Velocity

n
NET Shaft Power

and, in dimensionless form:

Net efficiency is the same whether the coefficients are based upon true or reference
coefficients as all the diameters cancel out in the dimensionless expression for nNgT-

The performance data presented is for a model configuration which has the gaps between
the blade roots and the hub surface sealed. The gaps were disproportionately large for
the model and were sealed to be more representative of a full scale Prop-Fan.

A group of four performance coefficlent figures are shown for each test Mach number,
except for Mo = 0.45. The first figure in each group, which is referred to as an efficiency
map, summarizes the CPRgy and MNET and blade angle. For clarity, the efficiency maps
do not show the test data points. The data points and the data point fairings are shown in
the second and third figures in each freestream Mach number group. The fourth figures
shows the same N NET vs JREF fairings as the third figures but, again for clarity, with-
out the data point symbols. The fourth figure was not necessary at the 0. 45 freestream
Mach number as the faired lines are clearly distinguishable from the data point symbols.
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The faired lines in figures 25 through 31 are based upon extensive studies and crossplots
of the experimental data. The faired lines accurately represent the data and yield smooth
contours on the efficiency maps. The figures show that the actual data points do not al-
ways define smooth curves. However, smoothness was found to be improved for those
data points which exhibited a difference of no more than +0. 01 in the windmilling advance
ratios as obtained from the non-rotating and rotating balances. The windmilling advance
ratio variation may be due to the blade locking mechanism which allows slight blade angle
changes to occur during the initial powered operation at each new angle. The windmilling
test procedures and the force measuring systems are described in the Test Procedure and
Propeller Test Rig sections and in Appendix A of this report.

Additional performance characteristics for operating conditions that are of primary impor-
tance for Prop-Fan applications are presented in figures 32 through 40. In this second
format the figures show variations in net efficiency with power loading, freestream Mach
number, tip speed and altitude. These performance trends, which are in dimensional
form, are based upon the true blade tip diameters as shown in figure 14 and upon the
experimental data presented in figures 25 through 30. The relationships which have been
used to generate these performance trend characteristics from the reference coefficient
figures are presented in Appendix B. Additional relationships which were used in other
sections of this report, and/or which clarify the variable diameter influence are also
presented in the appendix.

A discussion of the experimental data in both the non-dimensional and the dimensional
formats is presented in the following sections.

Reference Coefficient Data

The test data which define the SR-3 model Prop-Fan performance characteristics are
summarized in figures 25 through 30. As previously stated, these figures show the data
in dimensionless coefficient form for test freestream Mach numbers of 0. 45, 0.60, 0.70,
0.75, 0.80 and 0.85. The coefficients are based upon the blade tip reference diameter
and are therefore referred to as reference coefficients. Efficiency maps are presented
for each freestream Mach number, which show contours of constant net efficiencies

on lines for each blade angle of power coefficient versus advance ratio.

Net efficiency can be seen to vary from zero near the windmilling advance ratio (JRgF at
CPREF = 0) to a peak and then to lower values as advance ratio is decreased for each
blade angle and freestream Mach number. These performance variations are rather com-
pletely related to the blade element angles-of-attack and relative Mach numbers which
also vary with advance ratio. The blade elements generally operate at or near to the
maximum profile lift to drag ratios at the peak efficiencies. The maximum L/D's, how-
ever, are dependent upon the blade element relative Mach numbers which increase with
decreasing advance ratio at each freestream Mach number. Variations in blade tip
relative Mach number with advance ratio are shown on each of the summary efficiency
maps. These are the vector sums of the freestream and the tip rotational Mach numbers
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and are independent of blade angle as they do not include the propeller induced velocities.
The tip Mach numbers shown on the efficiency maps in figures 25 through 30 are based
upon the model reference tip speeds and are calculated from:

2 1/2

T
MRELREF—MO 3 +1

REF

The reference tip relative Mach numbers vary from about 0.60 to 1.25 for the test range
of advance ratios and freestream Mach numbers. The actual tip relative Mach numbers
are higher, by as much as 4%, and are defined by:

. 2 D 2 1/2
+1

IREF Dper

MREL = Mo

A number of performance characteristics can be obtained from visual inspections of the
data presented in figures 25 through 30. Peak net efficiency, for example, is essentially
constant at freestream Mach numbers from 0. 45 to 0. 70, but diminishes thereafter, and

is five percent lower at 0.85 Mach number. It canbe seen that CPREF also decreases
above 0.70 Mach number for any selected advance ratio and blade angle. At JREF = 3.1
and B 75R = 60.5°, for example, CpREF is 1.64 at Mo = 0. 70, but then drops to 1.49

at Mg = 0. 80 and to only 1.23 at Mo = 0. 85. Since the 9% and 25% lower power coefficients
are accompanied by lower efficiencies, net thrust coefficient is down by 11% and 29% at the
0.80 and 0.85 Mach numbers respectively. The lower power coefficients at the design and
higher Mach numbers were not expected, and for them to exist it is implied that the blade
element lift coefficients were similarly lower. Since the SR-3 Prop-Fan was designed
with a sufficient amount of blade sweep to promote subcritical operation, it appears that
sweep is not as effective as expected.

Many other performance characteristics can be obtained either by an inspection of the
curves or with a minimal amount of calculation and plotting. A few of the more interest-
ing of these are summarized in Table I for nine conditions which can be read directly
from the figures and for three which require inclusion of the true blade tip diameter.
These conditions are identified in the table and are described in the correspondingly
pumbered listing below the table. Conditions 11 and 12 are based upon the approxima-
tion that the power required for an airplane in level flight is proportional to the cube of
the freestream velocity, i.e., P/pg Vo3 = constant. The proportionality is valid if the
airplane induced drag is small in comparison to the parasitic drag. In terms of the pro-
peller coefficients, a constant P/po V03 for a given propeller diameter states that:
(®/D%)/po Vo3 = Cp/J 3, Based upon the reference diameter and figures 25 through 30
the power loading (P/D2) is the reference power loading and Cp and J are reference
parameters. The SR-3 model design J of 3. 06 and Cp of 1,695 yield a Cp/J3 = 0.059
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for the 0.80 design freestream Mach number. Lines of constant Cp/J3, or in this case
CPREF/JSREF, superimposed on the efficiency maps allow: (1) the assessment of air-
plane performance in level flight over the freestream Mach number range and (2) the
rapid determination of the advance ratio (tip speed) at which net efficiency is a maximum
for each Mach number. Two such lines for the design CpREF/ISREF = 0. 059 and for
60% cruise power, or CPREF/J3R_EF = 0. 035, are shown on the 0.80 Mach number
efficiency map in Figure 31. These and identical lines were used in conjunction with
each efficiency map to define the maximum net efficiencies in table I for the design
power and 607 part power level flight.

TABLE I. NET EFFICIENCY VARIATIONS WITH MACH NUMBER
FOR SELECTED OPERATING CONDITIONS

Condition Mo= _0.45 0.60 0.70 0.75 0.80 0.85
1. JREF =3.06, Cpppp = 1.695 80.1 80.2 80.5 79.6 78.8 77.0
2. J=3.06, Cp=1.695 79.5E 79.8 80.0 79.2 78.2 76.2
3. Max nygT 82.5 83.0 82.5 81.3 80.5 77.5
4. Max TNET @ MQREgF = 0. 822 81.0E 81.9 80.7 80.7 79.8 77.3
5. Max nygr @ MQ = 0.822 81.2E 82.0 81.0 80.8 80.0 77.4
6. Max nNET @ MRELRgF = 1.15 BD BD 78.E 79.3 79.7 77.5
7. Max nNET @ MRELggyp = 1.10 BD  79.7 80.4 80.6 80.3 77.5
8. Max MNgET @ MRELREF = 1.00 80.0 82.0 82.0 81.3 79.0 74.E
9. Max nNET @ MRELRgy = 0.95 81.3 82.9 82.5 81.3 77.0 BD
10. Max nygpr @ MREL = 1. 00 80.2 82.1 82.1 81.4 78.6 T73.E
11. Max nypr @ chEF/JREF3 = 0. 059 82.5 82.0 80.8 80.0 79.2 77.0
12. Max nygT @ CPREF/JREF3 = 0.035 82.5 83.0 82.5 81.3 80.5 77.5

BD = Beyond Data, E = Extrapolated
JREF = Design J = 3. 06, CPREF = Design Cp = 1.695.
Design J = 3. 06, Design Cp = 1.695.

Maximum net efficiency at each Mach number.

W b

Maximum "NET @ MQREF = Design MQ = 0.822, which is the rotational
tip Mach number for the design tip speed of 243.8 m/s (800 fps) at an altitude
of 10688 m (35000 ft).
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5. Maximum net efficiencies at the design true MQ = 0. 822.

6.-9. Maximum net efficiencies at reference tip relative Mach number of 1.15,
1.10, 1.00 and 0.95.

10. Maximum net efficiencies at a true tip relative Mach number of 1.00. These
maximum efficiencies occur at JREF's that are D/DREF higher than those for
a reference tip relative Mach number of 1.00.

11. Maximum net efficiencies for an airplane in level flight and with the power

required proportional to Vo3 and equal to the design cruise power at 0.80
Mach number.

12. Same as 11 at 60% power.

Most of the tabulated results are self-explanatory, although some highlights are noted.

As described earlier, the efficiency maps have been prepared with the use of the Prop-
Fan reference diameter. Since the true SR-3 tip diameters are larger than the refer-
ence diameter at all test blade angles, the true Cp's and J's are smaller than the refer-
ence Cp's and J's. This means, then, that the reference maps must be entered at JREF 'S
and Cpppy's that are greater than the true values in order to read true efficiencies.

Some of the equations governing the relationships between true and reference quantities
are presented in Appendix B.

Conditions 1 and 2 show that the net efficiency trends with freestream Mach number are
similar for the true and the reference design advance ratios and power coefficients, but
the level of the net efficiencies at the true J and Cp are from 0. 4% to 0.8% lower. The
0. 80 Mach number net efficiency at the true design J and Cp is 78.2% for the SR-3
model Prop-Fan, as shown in condition 2.

Conditions 4 and 5 show that the maximum net efficiencies at each test freestream Mach
pumber are nearly the same at a true and at a reference 0. 822 tip rotational Mach num-
ber. This Mach number corresponds to the design tip speed at the design altitude.

Variations in net efficiency with flight Mach number and with tip relative Mach number
are illustrated in conditions 6 through 10. At 0. 45, 0.60 and 0. 70 flight Mach numbers
the peak efficiencies occur at the lowest of the tabulated reference tip relative Mach
pumbers. At 0.75, 0.80 and 0. 85 the peak efficiencies occur at higher reference tip
relative Mach numbers, but within the range of those in the tabulation. For the design
value of the reference tip rotational Mach number, MQREF = 0. 822, the values of
MRELREF vary from 0,937 to 1. 182 as flight Mach number varies from 0.45 to 0. 85,
and is equal to 1.147 at the 0.80 design Mach number. Conditions 8 and 10 compare the
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peak net efficiencies for a true and reference tip relative Mach number equal to 1. 0.
The differences are small except at 0. 80 and 0. 85 Mach number, where a 1.0 tip rela-
tive Mach number occurs to the right of the constant efficiency contours and where
efficiency changes fast for small changes in advance ratio.

The eleventh and twelfth conditions express the peak net efficiencies at each Mach num-
ber where the operating points are governed by P/Povo3 = constant. This power-velocity
relationship is expressed through the dimensionless coefficients as:

C 2
PLEF i P/D REF
3 - 3

J REF 8%

Condition number 11 represents the design point value of the power-velocity relationship
examined at each of the tunnel freestream Mach numbers. These represent reference
quantities, and the line of constant CPR_EF/JsRE F = 0.059, as shown on the 0. 80 Mach
number efficiency map in figure 31, passes through the design point values of CPREF =
1.695 and JREF = 3.06. The maximum efficiency on this line is 79.2%, or 0.4%

higher than the reference design point efficiency. The higher efficiency occurs at a
lower JREF and therefore at a higher reference tip speed than the design values. Condi-
tion number 12 represents 609 of the design point power and is expressed as CPref/
JREFS = 0.035. It is interesting to note that the peak efficiencies at this loading level
are equal to the maximum efficiencies at any CPREF and JREF combination, as shown,
for example, in condition 3.

Dimensional Performance Trend Data

The coefficient data in figures 25 through 30 are shown in the most general and useful
form to establish specific performance trends. Variations in net efficiency with power
loading, tip speed and freestream Mach number that were obtained from these data are
shown in figures 32 through 40. These performance trends are based upon the true tip
diameters. The true diameters, expressed as percents of the 62.2 cm (24.5 in) refer-
ence diameter, are also shown on the performance trend curves.

The performance trends with tip speed and power loading at the design altitude are shown
in figures 32 through 35 for cruise Mach numbers of 0.70, 0.75, 0.80 and 0.85. At each
Mach pumber the highest peak net efficiency occurs at the lowest tip speed. In figure 34
at 0.80 Mach number, for example, the peak net efficiencies range from 80.2% to

79.7% at tip speeds of 213.3 m/s (700 fps) and 259.0 m/s (850 fps) respectively. The
corresponding power loadings are 170 kw/m2 (20 HP/ft2) and 240 kw/m2 (30 HP/1t2),

Figures 32 through 35 can also be used to establish the maximum available net efficiencies

at the design point value of the power/velocity relationship, Cp/J 3 = 0. 059. The maxi-
mum efficiencies and the associated power loading and tip speeds for the design altitude
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are summarized in table II. The tip speeds which produce these maximum efficiencies
are higher than the design tip speed at all but the 0.70 freestream Mach number. At 0.80
Mach number the optimum tip speed at the design power loading is 10% higher than the
design speed of 243 m/s (800 ft/sec). The net efficiencies at the power loadings shown
in the table and at a tip speed of 243 m/s (800 ft/sec) are obtained from figures 32
through 35, and are 80.5%, 79.8%, 78. 2% and 75.3% at the 0.70 to 0.85 freestream

Mach numbers.

TABLE I - MAXIMUM NET EFFICIENCY AT

Cp/33 = 0.059
Net Efficiency Power Loading Tip Speed
M % kw/m?2 (hp/ft) m/s (fps)
0.70 80.6 200 (25.1) 236.2  (775)
0.75 80. 1 247 (30. 9) 251.4  (825)
0.80 79. 0 300 (37.5) 268.1  (880)
0.85 76.8 360 (45. 0) 277.3 (910)

variations in net efficiency with power loading and freestream Mach number are shown
in figures 36 and 37 for the design tip speed and altitude. The same data are shown in
these two figures with merely a switch in the abscissa and independent variables. Both
figures show that the power loading at peak efficiency increases with increasing Mach
numbers.

The effect of altitude on the relationship between net efficiency and power loading is
shown in figure 38 at the design tip speed and freestream Mach number. The data covers
higher power loadings at the lower altitudes due to the associated higher air densities.
The peak efficiencies are slightly higher at the lower altitudes due to favorable increases
in advance ratio at the selected tip speed and Mach number.

The performance trends at 0.45 Mach number are shown in figures 39 and 40 for sea level
and 7634 meter (25, 000 foot) altitude climb conditions respectively. The variations in net

efficiency with power loading for three tip speeds are shown on each of these figures.

Performance Comparison With Predictions

One of the important objectives of the SR-3 Prop-Fan program was to utilize the mea-
sured performance to assess the aerodynamic design and performance predictive meth-
odology. Two Prop-Fan methods have been compared with test. The first, program
H444, the Hamilton Standard Propeller Method, discussed previously, is the basic pro-
peller performance method, which has been revised to account for blade sweep and for
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cascade airfoil effects. The method uses compressible airfoil data and calculates blade
induced flow from the Goldstein theory (ref. 14). The second method, program H409,
is a compressible vortex method developed especially for Prop-Fans. The major dif-
ference in the two methods is that the latter method corrects the induced velocity for
supersonic relative Mach number effects and corrects the two-dimensional compres-
sible airfoil data for Mach cone effects. The H409 program also includes the effect of
the trailing vortex system on the induced flow of the swept lifting line as well as the
bound circulation contribution of the swept blades to the induced velocity.

Comparisons of the calculated and test performance were developed to assess the ability
of the methods to show the proper trends with Mach number, blade angle and advance
ratio. These comparisons are shown in figures 41 through 43.

Variations in net efficiency with freestream Mach number for the test data and for both
the H444 and H409 programs are shown in figure 41. These comparisons are for opera-
tion at the design advance ratio (J = 3. 06) and power coefficient (Cp = 1.695) at each
Mach number. The test and the calculated blade angles at the 0. 80 design freestream
Mach number are shown at the top of the figure. Variations in the change in blade angle
with Mach number from the 0.80 Mach number blade angles which are necessary to main-
tain the design J and Cp are shown in the upper half of the figure. It can be seen that
both methods under predict the design point blade angle by approximately four to five
degrees. Blade angle descrepancies have also been observed in the earlier Prop-Fan
model tests, and whereas the reasons for this are not fully understood the magnitude of
the discrepancies has been observed to be dependent upon the amount of blade tip sweep.

It is noted that the trend in the blade angle change with Mach number is reversed in
relation to the test data for the H444 program and is predicted somewhat better with the
H409 method. Both the level of net efficiency, particularly at 0.80 Mach number, and

the performance trend with Mach number are predicted best by the compressible vortex
method.

The curves in the upper half of figures 42a through 42c show the performance comparison
trends for variations in blade angle and freestream Mach number. Advance ratio is fixed
at J = 3. 06 for each of these figures and the power coefficient variations are due to the
blade angle changes which are shown in the lower half of the figures. The blade angle
changes are in relation to the blade angles, shown at the top of each figure, which are
required for a J = 3.06 and Cp = 1.695. The performance at each Mach number is over
predicted by both methods, but the correlation with the test results is better with the
H409 program. This method correlates quite well at 0.80 Mach number but over pre-
dicts the efficiency by 1.5% to 2.0% at 0.75 and 0.85 Mach number. The slope of the

Cp variation with blade angle change is also better predicted by the compressible vortex
method.
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Comparisons of test and predicted performance with variations in advance ratio are
shown in the upper half of figures 43a through 43c at freestream Mach numbers of 0. 75,
0.80 and 0.85. Blade angle is held fixed at the values shown at the top of these figures,
and these are the same angles as in figures 42a through 42c. The performance levels
predicted with the H409 program are again in better agreement with the test results,
although the shapes of the TNET versus J curves are better matched by the H444 method.
The lower half of the figures show the comparison {n the variations in Cp with changes
in J. Here, the H444 method produces the better comparisons, but neither program
matches the test results very well.

In summary, the levels of predicted net efficiencies with the H409 program are in better
agreement with the experimental data than are those predicted with the H444 program.
H409 accurately calculates the SR-3 design point net efficiency while the H444 calculated
efficiency is 3% too high. Both methods underestimate the design point angle by from

4 to 5 degrees.

Power Loading Analysis from the Wake Survey Probe Data

Four of the test conditions for which the wake survey probe (WSP) was installed were
selected to examine the spanwise distributions of elemental power coefficient, dCp/dx.
Measurements of static and total pressure, total temperature and flow direction were
made at a number of radial positions. The probe was located 13.0 centimeters (5.13
inches) downstream of the SR-3 blade pitch centerline.

The four test conditions which were analyzed are summarized in table II. Each of these
is for an advance ratio which is near the design value, J = 3.06. The three quarter radius
blade angle is the same for each case and is one degree lower than that which produces
the design Cp and J at 0.80 Mach number. These data are based upon the calculated
actual blade tip diameters.

TABLE IMI. WAKE SURVEY PROBE CONDITIONS USED
TO ESTABLISH POWER LOADING DISTRIBUTIONS

Power
Tip Speed Loading 0 Pressure Tip Rel.
M J Cp  PO.75R__m/s  (fps) kw/m®?  (HP/ft%) Ratio Mach No.
0.70 3.007 1.504 60. 7° 217 (713) 142 (35.4) 1,0461 1.010
0.75 2.995 1.457 6C.7° 233 (765) 137 (34.3) 1.0511 1.086
0.80 3.002 1.385 60. 7° 249 (816) 131 (32.6) 1,0571 1.158
0.85 2.978 1.177 60.7° 266  (872) 111 @7.7) 1.0565 1,237
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The elemental power coefficient distributions which were calculated from the traversing
wake survey probe measurements are shown by the circled points in figures 44a through
44d. The probe data offered a choice between total temperature and swirl angle mea-
surements from which to make these calculations. The total temperatures rather than
the swirl angles were selected for three principal reasons: (1) they produce loadings
which integrate closer to the power coefficients obtained from the rotating balance, (2)
coupled with the total pressure they convert to more realistic adiabatic efficiencies than
those based upon the swirl angle measurements, and (3) the temperatures generally
showed less scatter and less sensitivity to the blade tip vortices. The calculation pro-
cedures which were used to obtain the dCp/dx distributions from both the total tempera-
tures and the swirl angles are presented in Appendix C.

The four power coefficient distributions shown in Figures 44a through 44d are for a test
blade angle of 60.7°, for advance ratios near the 3. 06 design J and for the balance mea-
sured true Cp's that are indicated on the figures. The calculation blade angles were
selected to match the measured Cp's and are from four to five degrees lower than the
test blade angle. Integrations of the wake survey peak dCp/dx distributions yield Cp's
of 1,50, 1.54, 1.42 and 1,29 at Mach numbers of 0. 70, 0. 75, 0.80 and 0. 85 respective-
ly.

Each of the wake survey probe loading distributions exhibit irregularities in the vicinity
of the blade tips. These irregularities are believed to be associated with tip shocks,

tip vortices and to the tip geometry of the SR-3 model. The shape of the four loading
distributions are quite similar except at 0.85 Mach number where the tip loading is more
irregular and dCp/dx falls off near the blade root. At this condition the shock strengths
are highest, as the tip relative Mach number is 1.237, and blade root choke has been
observed in the data.

As previously stated, the total temperature measurements were generally preferred
over the swirl anglé measurements for the purpose of calculating loading distribution.
The swirl angle measurements were found to exaggerate the tip loading irregularities.
Total temperature ratios obtained directly from the measurements and as calculated
from the measured swirl angles for the 0.80 Mach number loading condition are shown
in figure 45. Equivalency in appendix C was used to make this calculation, and the larger
swirl dependent tip frregularity as well as the lower temperature ratio level are shown
in the figure. The 0.85 Mach number distribution which is also shown is very irregular
for the full span of the probe survey. At this Mach number the swirl angle measure-
ments did not exhibit as much irregularity, and, as shown in figure 46, were as small
as the 0.80 Mach number distribution.

Comparisons of Wake Survey Probe and Predicted Loading Distributions

Predicted loading distributions based upon the two previously discussed Hamilton Standard
aerodynamic programs are also shown on figures 44a through 44d. These programs,
H444 and H409, have been described in some detail in the Aerodynamic Design Proce-
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dure section of the text. The H444 loadings are shown by the dashed lines in the figures
and the H409 loadings are shown by the solid lines.

Both the H444 and the H409 predicted loadings agree fairly well with the loading calcu-
lated from the WSP measurements. Generally the mid-span loadings are predicted better
by H444, while H409 produces a better match for the tip region loadings. Both programs
under predict the root loadings except at 0.85 Mach number where the test dCp/dx falls
off due to blade root choke.

The basic shapes of the H444 loadings are very similar at each Mach number. These
predictions show peak loadings at fractional radii between 0.80 and 0.85. The shapes
of the test loading are also quite similar at each Mach number, peaking perhaps a little
nearer the tip. The H409 loading shapes, on the other hand, are dependent upon Mach
number. The peaks occur further outboard at the lowest Mach number and further in-
board at the highest Mach number than either the test or the H444 program loadings. R
is fairly evident that further aerodynamic method development is required to improve
the loading as well as the overall performance correlations for highly swept, high speed
Prop-Fans.

PERFORMANCE COMPARISONS OF PROP-FAN MODELS

As previously pointed out, the SR-3 Prop-Fan model is the fourth in a series of models
tested in the LeRC 8 x 6 tunnel. Accordingly, it is appropriate to present a brief com-
parison of the results of the four Prop-Fan models tested to date.

A photograph of an SR-3 blade is shown in figure 47 along with a 30° swept SR-1 blade
and a straight SR-2 blade. The SR-1M blade, not shown, is similar to SR-1 except for
a tip twist and section camber modification. Although the test reports on these models
have not yet been published, the final performance data on the SR-1 and SR-2 models
are available. Final corrections to the test data for the SR-1M model have not yet been
established, at the time of this analysis of the SR-3 data.

The SR-3 Prop-Fan has shown the highest net efficiency of any model tested to date at
the Mach 0. 8 design cruise condition. Moreover, this model does not show the rapid
fall-off in efficiency as Mach number is increased above 0.8. The measured net
efficiency of the SR-1, SR-2 and SR-3 8-blade Prop-Fan models operating at the design
advanced ratio and power coefficient are shown in figure 48. Note that the SR-3 model
comes within 2. 0 percent of the 80 percent efficiency goal at 0.80 Mach number. At
Mach 0. 85, the SR-3 model achieves an efficiency of 76.2 percent, exceeding the SR-1
and SR-2 by 3.5 and 3. 0 percentage points, respectively. Over the entire Mach number
range the SR-3 model shows the highest efficiencies. The figure indicates that the Prop-
Fan performance is improved as sweep is increased. It is expected that new models,
whose designs will incorporate the experience gained and the improved aerodynamic and
acoustic methods being developed, will show further improvements in performance and
gource noise reduction.
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LIMITED ACOUSTIC COMPARISONS

It has been pointed out that the SR-3 model was the first of the Prop-Fan mode is to be
designed for both maximum performance and minimum near field noise. Near field
noise measurements were made on this as well as on the SR-1 and SR-~2 model Prop-
Fans. The acoustic tests were conducted in the UTRC Acoustic Research Tunnel (ref.
15 and 20) and in the LeRC 8 x 6 tunnel (ref. 21 and 22). These data have not only
established near field noise levels for Prop-Fans but have also provided a correlation
data base for this contractor's newly developed noise theory. The initial correlations
that have been made for these three models generally confirm the predicted acoustic
trends that were previously shown in figure 11.

Transducer locations and data from the LeRC acoustic tests are shown in figure 49,
Evident in figure 49(b) is the directivity of the blade passage tone measured on the tunnel
ceiling. This indicates that any required fuselage treatment would be limited in area.
Figure 49)c) presents the peak level of the blade passage tone at different helical tip
speeds. The tip speed was changed by operating the tunnel at different free-stream
Mach numbers and running the propeller at near design Cp and J. Both data plots show

significant noise reduction (5 to 6 dB) for the 45° swept SR~3 design relative to the un-
swept design.

The acoustic measurements in both tunnels have shown that reduced levels of near field
noise have been achieved with the SR-3 model Prop-Fan. These improvements were
made as a result of a dedicated low noise design effort.
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CONC LUSIONS

The SR-3 model achieved a net efficiency of 78.2% at the 0.80 Mach number design
point.

The model achieved a maximum net efficiency of 80. 4% at the 0.80 design Mach
number.

The maximum net efficiency of the model at 0.85 Mach number is 77.5%, indicating
that the performance fall off above the design Mach number is modest.

Maximum net efficiencies between 82.5% and 83. 0% were measured at Mach num-
bers from 0.45 to 0.70.

The 78.2% design point efficiency of the 45° swept SR-3 Prop-Fan model exceeds

the performance of the 30° swept SR-1 model by 2.0% and the unswept SR-2 model
by 2.4%.

The wake survey probe measurements indicate the presence of flow irregularities
near the blade tip. These are most likely due to the blade tip vorticity and are
present at all Mach numbers. The measurement also show a significant reduction

in root power loading at 0.85 Mach number where blade root choke has been detected.

Performance comparisons made with Hamilton Standard's two aerodynamic methods
show fair agreement with the test results. The design point efficiency is accurately
calculated with the newer compressible vortex method, but the efficiencies calculated
with either method are generally higher than test.

Significant noise reductions have been measured for the aero/acoustically designed
SR -3 model Prop-Fan.
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AF

CLD

CL

CP

CTP

CTWB

LIST OF SYMBOLS

noise amplitude

area L0

blade activity = 6250 [ (/D) x3dx
f;

actor Hub /tip

elemental blade chord, m
speed of sound
absolute velocity, m/sec

elemental blade design lift coefficient

1.0

integrated design = 4 CLD x3dx

lift fficient
ift coefficien Hub /tip

specific heat at constant pressure, 1004 (J/kg)/K

power coefficient = P/p0n3D5

2
thrust coefficient = T/pon p
thrust coefficient direct from power-point data (Appendix A)

corrected thrust coefficient for power-point (Appendix A)

average of effective thrust coefficients from windmill points before
and after a power-point

axial velocity, m/sec
swirl velocity, m/sec
drag, N

blade tip diameter, m

decibel
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LIST OF SYMBOLS (Continued)

dCp/dx - elemental power coefficient

dCT/dx - elemental thrust coefficient

FB - force balance

g - gravitational constant, 9.8 m/ sec2

J - advance ratio = Vo/nD

J - mechanical equivalent of heat (Appendix C)
JP - advance ratio for power-point (Appendix A)
JPR - reference windmill advance ratio

JPW - average windmill J before and after power points
Jw'm d - advance ratio during windmill drag runs

M -  Mach number

MREL - blade tip relative Mach number

MQ - Dblade tip rotational Mach number

n - rotative speed, rps

N -  rotative speed, rpm

P - power, watt

PA - pressure forces in the form (P —Po) *Area, N
PR -  total pressure ratio = Pt/Pto

P -  sgtatic pressure, N/cm2

P -  total pressure, N/cm2

PTR - propeller test rig
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LIST OF SYMBOLS (Continued)

q - dynamic pressure, N/cm?

Q - operating condition constant (Appendix C)
r - radius, m

R -  tip radius, m

R - universal gas constant, m/K

r/R - fractional radius

S -  operating condition constant (Appendix C)
SHP -~  Prop-Fan shaft horsepower

t - elemental blade maximum thickness, cm
T ~  thrust, N

TR - total temperature ratio = Tt/Tt

0

T, -  static temperature, °K

T, - total temperature, °K

U - elemental rotational velocity, m/sec

\Y -~ velocity, m/sec

w - weight flow, kg/sec

WSP - wake survey probe

x -  fractional radius, x = r/R

X - length aft of nacelle leading edge

0. 75R -  Prop-Fan chord angle at 75% tip radius, deg
Leq - equivalent (30.75R used in Appendix A

Y -  ratio of gpecific heats, 1.4
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LIST OF SYMBOLS (Continued)

n - efficiency = TVO/P x 100

A - blade tip sweep angle (relative to radial line through blade root), deg
nad - adiabatic efficiency = (PR2/7-1)/(TR-1) x 100

g - mass density, kg/m3

o - phase angle, deg

0 - pitch angle, deg

¢ - yaw (swirl) angle, deg

Subscripts

APP - apparent

EFR - effective or net from reference windmill drag data

N - nacelle, or nacelle maximum radius, 10.8 cm

NET - net

NT - nacelle tare

REF - reference, based upon 62.2 cm (24.5 in) reference diameter
] -  spinner

w - wake survey probe

o - tunnel freestream condition
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FIGURE 13. SR-3 MODEL BLADE
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FIGURE 17. VARIATION OF BLADE SWEEP DISTRIBUTION WITH BLADE FRACTIONAL RADIUS
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REFERENCE ADVANCE RATIO, JREF

(b) POWER COEFFICIENT

FIGURE 25. (CONTINUED)
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APPENDIX A
ADJUSTED METHOD USED TO OBTAIN MEASURED PROPELLER THRUST

The propeller at windmill (no power) was used as a reference condition to correct the
thrust readings from the rotating balance. This procedure was required to overcome

a slow thermal drift in the rotating balance thrust reading. Windmill reference condi-
tions were established during special tunnel runs using the strut-mounted force system.
Dimensionless propeller thrust coefficient and advance ratio were used to eliminate
possible small variations in windmill operation due to any day-to-day changes in wind
tunnel conditions. After establishing the reference windmill conditions (Figures A.1
and A. 2), incremental thrust data were obtained using the rotating balance in a wind-
mill-power-windmill test sequence. At each desired power point, the PTR was first
windmilled, then a power point was taken followed by a second windmill point. By sub-
tracting from the thrust at the power point the average of the two windmill points (from
the rotating balance) an incremental propeller thrust was obtained. Since the drift in
thrust output from the rotating balance was very small over the short time increment
required to obtain the three data points, any significant error (in the incremental thrust)
could be eliminated. The incremental thrust from the rotating balance was combined
with the reference windmill conditions determined in the earlier tests (with the strut-
mounted force system) to establish the final propeller operating conditions. The pro-

cedure and equations that were used to establish the final adjusted performance condi-
tions were:

(a) Obtain an average reference windmill advance ratio (JPR) for each blade angle
and Mach number from the powered runs.

(b) Obtain an equivalent blade angle (B eq) from JPR of the powered runs and the
windmill-advance-ratio curves generated in the windmill drag runs (Figure
A. 1),

(c) Obtain the reference effective (or net) thrust coefficient at windmill (CTEFR)
at 3eq from the effective-thrust-coefficient-at-windmill curves generated in
the windmill drag runs (Figure A. 2).

(d) Calculate and print adjusted summary tables based on the reference advance
ratio (JPR) and reference effective thrust coefficient (CTEFR). The thrusts
at power-points are adjusted for thermal zero shift according to the equation:

2 2
CTP=CTB - CTWB JP 5 + CTEFR JP_Z
JPW JPR

where CTP = adjusted thrust coefficient (rotating balance)
CTB = power-point thrust coefficient (rotating balance)
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JP = power-point advance ratio

CTWP = average of effective thrust coefficients from
windmill points before and after power-point
(rotating balance)

JPW = average of advance ratios from windmill points
before and after power-point

and JPR and CTEFR as described above.

Figures A.1 and A. 2 illustrate the procedure described above, shown on the JPR and
CTEFR versus 30, 75R plots used for the data reduction. Identical propeller hardware
(SR-1) with a conic spinner) was tested in both the NASA Lewis 2.44 x 1.83m (8 x 6 ft)
tunnel and the UTRC 2.44m (8 ft) octagonal tunnel using different Propeller Test Rigs
(PTR). The NASA data were reduced using the Adjusted Performance Method described
above. Figure A.3 presents a comparison of data from these two facilities at 90% and
100% design power loading. The data agree within about one percent at 90% loading,

and at design the agreement is even better. A slight extrapolation of the UTRC data
was required to obtain the design power loading condition due to limited power capability
of that facility's PTR.
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APPENDIX B

EQUATIONS RELATING ACTUAL AND
REFERENCE PERFORMANCE CHARACTERISTICS

Definitions
1. D/Dggr = f (B0.75R, N), see Figure 14.
2. Actual quantities are based upon D and are not subscripted.
3. Reference quantities are based upon DRgy and are subscripted "REF".
4, Net efficiency is not dependent upon diameter.
5. Dgrgf = D/(D/DREF)-
6. Reference advance ratio and power coefficient:
JREF = V/(@* DREF) (B2)
Cpper = P/(P* n3 - DOy (B3)
7. Actual advance ratio and power coefficient:
J=V/@n- D) (B4)
Cp = P/(p* n3 - DY) (B5)

Relationships for the Various Performance Summaries Presented in this Report

1. To use the reference performance charts (Figures 25 - 31 for actual
J & Cp values.

JREF = J(D/DREF) (B6)
JREF”Y
Cprer = Cp (O/DREF®  (B7)

Cprer >Cp

where D/DREF 18 read from Figure 4.
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2. To obtain power loadings (P/D2) at specific tip speeds (U) as shown in Figures

32 through 40 from the reference performance coefficient charts.

s
JREF = "T' (D/DREF) (B8a)

or in terms of Mach number,

M
JREF = 7 cstd e (D/DREF) (BSb)
and,
3 2 5
=T -g-R-tstd {P/D2) (D/Dpry)
CPREF Patd %5) wijey (®%
or,
73 (P/D?) (D/DRgp)?
CPrer= 5 —r— (B9b)

and, in terms of JREF and M

_ (D/DREF)? p/D2\ [JIREF )3
CPREF T Pstd. Cstd (ﬁ. é \ M (BSc)

3. To obtain performance characteristics for specified tip rotational Mach

numbers:

JREF = ;Ifg (D/DREF) (B10)

where, MQ = U/e¢

. (O/DRep)® P/D2 w3
CPrEF MQ)3 V6.6 - Pstd* Cgq

(B11)
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4. The equation relating the actual and the reference tip relative Mach number

is presented in the text, and is:

2 2 1/2
r D
MREL=Mo | [ — — +1

REF REF

(BL)
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APPENDIX C
CALCULATION OF dCp/dx AT BLADE CENTERLINE FROM
THE WAKE SURVEY PROBE (WSP) MEASUREMENTS

Measurements

Pg, Py, Tt and y @ 27 radial locations. See flowpath sketch, Figure C.1.

Assumptions and Definitions

a.

Elemental flow (dW), total temperature (Tt) and rCu are constant for a stream-
tube downstream of the blades.

Prop-Fan slipstream boundary is determinable from the WSP measurements.

Streamlines are the same from the blade to the WSP station for all conditions
that have the same slipstream boundary.

Total temperature provides a better measure of the dCp/dx loadings than swirl
angle (y). This is justified by the adiabatic efficiencies {(nad) which are calcul-

able from each; generally n,4 s 100% from Y and < 100% from TR, as shown
in item 4.

Streamlines are predictable from an internal flow compressible turbofan

streamline curvature program for which the slipstream boundary represents
the OD wall.

dCp/dx = dP/dx/p  n3D5
Blade centerline variables are not subscripted.

Pitch angles, 6, are from design point analysis.

Calibrated WsSp measurements are converted to the quantities required for
this analysis by:

M = [(PT/PS)vzv/7-1J 5 1/2

w
2 - 1
Tsw = (1 + Mw/s) Tow
. 1/2
Cw - (ngRTsw) Mw
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C = Cw cos ¢w cos ew
EPy = Psw/(R.Tsw)

aw Cw sin Yy €08 0

TR, = Ttw/Tto

Equations for calculating dCp/dx
1. From WSP total temperatures measurements:
From the steady flow energy equation:

dP=CP.J.T (TR -1)dw
to w w

and by assumptions and definitions:

dw_ =dw
w

TR _=TR
w

dWw = 27rgpw Cxw T, drW

dr = dx (D/2)
r, =X (D/2)(rw/r)
and, defining a condition constant:
3.3
Q= (r- CP-J-TtO)/(ZpOn D")
then,
dCp/dx = Q x (rw/r)(drw/dr) 8P, Cxw (TRW -1) (C1)

The relationships between ry, and r and dry, and dr were obtained from
curve fits of the design point streamline analysis:

=-2.381+1,336 r -0.0121 r2 (C2)
w w
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and,

dr/dr =1.336 - 0.0242 r (C3)
w w

From WSP swirl angle (swirl velocity) measurements:
From the steady flow energy equation:

dp = dW_ (Ucu)w/g

since,
C =C tany
uw Xw w
dw =dw
w
(uc ) =1uC
u'w u

U =27nr
w w

and, defining a condition constant:

2 2_2
s=7"/(2gp n D)

2 2 2
dCp/dx = S x (rw/r) (drw/dr) gp,, Cxw tan zpw (C4)
Correlation between TR and y_ .
W w

Theoretically TRw and y should produce the same dCp/dx values. However,
due to the very large influence of small temperature and swirl angle errors,
this equivalency is practically never achieved. The WSP temperature ratios
are shown in Figure 45 for the 0. 80 and 0.85 free-stream Mach number cases
which are illustrated in the dCp/dx distributions, Figure 44 (c) and 44 (d). The
temperature ratios calculated from the swirl angles are also shown on Figure
45 for the 0.80 Mach number case. These temperature ratios are about 0. 002
lower than those based upon the measured temperatures, representing about
0.6°K (1.0°R) differential. The 0.80 and 0.85 Mach number swirl angles are
shown in Figure 46.
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Equating either the two dCp/dx equations, C1 and C4, or the steady flow
energy Euler equations, defines the theoretical equivalency between TRy, and

Pwe

dCp/dx distributions were calculated from the wake survey probe total tempera-
ture measurements using equation C1. This decision was made because the
total temperature measurements were believed to be more accurate than the
swirl angle measurements. Evidence of this is shown in the levels of adiabatic
efficiencies that were calculated from both the temperature and swirl angle
measurements. A typical example of the adiabatic efficiencies calculated from
both measurements for the 0.80 Mach number condition, Figure 44c, is shown
in the table below. Adiabatic efficiencies were calculated from:

Condition: M =0.80, J = 3.002, Cp = 1.385, 8¢, 75R = 60.7°

.Syﬁ nad (from TRW) nad (equiv. TRy from ¥w)
1.001 64.69% 176. 2%
0.980 88.7% 77.3%
0.940 94. 9% 101.2%
0.879 93.9% 104.8%
0.818 96.5% 105. 2%
0. 737 94.1% 106. 4%
0.617 95.0% 114.19%
0.475 98.1% 119.4%
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